Marine Water Quality Standard

The Thailand National Environment Board issued the 7th decree (B.E. 2537) for the control of coastal water quality. According to the decree, Thailand established the original Coastal Water Quality Standard, which has been used to govern and manage coastal water for ten years. When taking into consideration the current state of the economy and environmental awareness as well as the rapid advancement of technologies it has become clear that the original standard is outdated. National Environment Board reconsidered the original standard and agreed that the amendment of the original standard was needed. Subsequently, the 7th decree was renounced on January 20, B.E. 2537 and the new marine water quality standard were designated as follows:

Definition

"Marine water" means that all waters within Thai territorial water, excluding surface waters defined according to the decree regarding the establishment of surface water quality standard issued by the National Environment Board.

<u>"Thai territorial water"</u> means that territorial waters under the sovereignty of Thailand in compliance with Navigation in Thai Waters Act.

"Buffer zones" mean areas between two waters with different uses; its area shall be defined based on the distance of 500 meters from the water that has lower water quality.

Classification of Marine Water:

Class 1 Natural resource preservation areas shall be applied to the water that is not reserved for a particular use and is naturally suitable for breeding or nurturing newborn marine organisms as well as being able to serve as food sources and natural habitats for marine animals and plants as well as sea grass.

Class 2 Coral reef conservation areas shall be applied to the water densely inhabited by coral reefs, covering the area with 1,000 meter extension from the most exterior ridge of the coral reef.

Class 3 Aquaculture areas shall be applied to the water that is designated by fisheries laws to be used for aquacultural practices.

Class 4 Recreation areas shall be applied to the water allowed by the local administrative organization for swimming or other recreational activities.

Class 5 Industrial or ports zone shall be applicable to the water that is adjacent to an industrial estate whose definition shall conform to the law governing the Industrial Estate Authority of Thailand, or be applicable to port zones, whether it be ports or harbours; the area governed by the standard shall extend from the lowest tide line up to 1,000 meters.

Class 6 Residential districts areas shall applied to the water that is close to residential areas whose definition shall comply with municipal laws, Pattaya Municipality or Bangkok Municipality; the standard shall be applicable specifically to the parts of Pattaya, Bangkok and other municipalities whose borders are attached to the coastal area and extend from the lowest tide line up to 1,000 meters.

4

Overlapped areas and buffer zones

- (a) In the case that there is an overlapping among areas to which different standards are applied, the most stringent standard shall be preferred.
- (b) The classification of waters into each type of beneficial use shall proceed with the designation of a buffer zone located between two waters complying with different standards. Besides, water quality standard of a buffer zone shall not exceed the average between different standards of the two waters that have a buffer zone between them, nonetheless, with the following exceptions:
- (1) If a buffer zone is situated between the two waters, one of which possesses no standard, the water quality standard of the buffer zone shall not be greater than the standard available.
- (2) If the standard of two waters requires that their water quality be the same as it appears in nature, the water quality in a buffer zone shall not exceed half the standard.

Sampling requirements

- (1) Conduct the water sampling at the depth of 1 meter above the bottom and below the surface, providing that the water has a depth of less than 5 meters.
- (2) Conduct the water sampling at three different depths including 1 meter above the bottom and below the surface as well as at mid-depth in the water, provided that the water depth ranges from 5 to 20 meters.
- (3) Conduct the water sampling at five different depths, which are 1, 10, 20, and 30 meters below the surface and 1 meter above the bottom, provided that the water depth ranges from 20 to 40 meters.
- (4) Conduct the water sampling at five different depths, which are 1, 20, 40, and 80 meters below the surface and 1 meter above the bottom, provided that the water depth ranges from 40 to 100 meters
- (5) Conduct the water sampling at the depth of 1 meter below the surface and above the bottom as well as at the depth of every fifty meter, provided that the water depth is greater than 100 meters.(6) Conduct the water sampling at the mid-depth, provided that the water depth is equal to, or less than, 1 meter.

The water sampling shall conform to the six conditions above except for the following circumstances:

- (a) In the case of the Total Coliform Bacteria, Fecal Coliform Bacteria and Enterococci Bacteria, the sampling shall be performed at the depth of 30 centimeters below the surface.
- (b) In the case of floatable solids, colour, transparency, and oil & grease on the surface, the water sampling shall not be required; nonetheless, the measurement of these parameters shall be carried out at the sampling field.

Moreover, if the water be influenced by tides, sampling shall be performed until the lowest level of the tide is reached.

Marine Water Quality Standard

	Permitted Value for Marine Water Class											
Parameters	Class 1	Class 2	Class 3 Class 4		Class 5	Class 6						
i didilicters	Natural resource	Coral reef	Aquaculture	Recreation	Industrial or ports	Residential						
	preservation	conservation			zone	districts areas						
Floatable Solids		not unpleasant										
Colour	not unpleasant ^[1]											
Odour	not unpleasant ^[2]											
Temperature (°C)	an increase shall	any change of	an increase shall not	an increase shall not exceed 2 °C from the natural								
	not exceed 1 °C	the natural	exceed 1 °C from	temperature								
	from the natural	temperature shall	the natural									
	temperature	not be allowed	temperature									
pH	7.0-8.5											
Transparency	a decrease shall not be exceed than 10% of the minimum transparency governed by natural condition [3]											
Suspended Solids	an increase shall not exceed the average value within 1 day, 1 month or 1 year [4] added by its corresponding deviation value											
Salinity	any change shall not exceed 10% of the minimum salinity [5]											
Floatable Oil & Grease	not visible to naked eyes											
Petroleum Hydrocarbon (μg/l)	not exceed than 0.5 not exceed than 1 not exceed than 5											
Dissolved Oxygen (mg/l)	not less than 4 not less than 6 not less than 4											
Total Coliform Bacteria	not exceed 1,000											
(MPN/100 ml)												
Fecal Coliform Bacteria (CFU/100 ml)		not exceed than 7	0	not exceed than 100								
Enterococci Bacteria (CFU/100 ml)	-	not exceed 35	-	not exceed 35	-	-						
Nitrate -Nitrogen (μg-N/I)	not ex	cceed 20	not exceed 60									
Phosphate-Phosphorus (μg-P/I)	not exce	eed than 15	not exceed than 45	not exceed than 15	not exceed than 45							
Unionized Ammonia (µg-N/I)	not ex	cceed 70	not exceed 100	peed 100 not exceed 70								
Total Mercury (μg/l)	not exceed 0.1											
Cadmium (µg/l)			not e	xceed 5								

-

^[1] The color of marine water measured in scales of the Forel-Ule solution, ranging from 1 to 22

No offensive smell from sources, such as, crude oil, "rotten egg", chemicals, litter and decaying organic matters

The minimum level of transparency shall be ascertained based on marine water samples taken in the same season and from the same station for 1 year during which occurrence of tides exists

For 1-day average value, sampling /measurement shall be conducted every hour or, at least, 5 times a day at interval of constant period.

For 1-month average value, sampling /measurement shall be carried out every day or, at least, 4 times a month at interval of constant period

For 1-year average value, sampling /measurement shall be carried out every month; besides, it shall be conducted on the same day and at the same time throughout the year.

The minimum level of salinity shall be determined based on marine water samples taken in the same season and from the same station for 1 year during which occurrence of tides exists

Marine Water Quality Standard (cont.)

	Permitted Value for Marine Water Class											
D	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6						
Parameters	Natural resource	Coral reef	Aquaculture	Recreation	Industrial or ports	Residential						
	preservation	conservation	714444		zone	districts areas						
Total Chromium (μg/l)	preservation	Conservation	not exc	ceed 100	Zone	uistricts areas						
Chromium Hexavalent (μg/l)				ceed 50								
Lead (µg/l)		not exceed 8.5										
Copper (µg/l)	not exceed 8											
Manganese (μg/l)	not exceed 100											
Zinc (μg/l)		not exceed 100 not exceed 50										
Iron (μg/l)				ceed 300								
Arsenic (μg/l)				ceed 10								
Fluoride (mg/l)				xceed 1								
Residual Chlorine (mg/l)	-	-	-	-	not excee	d 0.01						
Phenol (mg/l)				ceed 0.03	5,000							
Sulfide (µg/l)				ceed 10								
Cyanide (μg/l)				xceed 7								
Polychlorinated Biphenyl, PCBs				tectable								
			ando									
Radioactivity (Becquerel/I)			not ev	ceed 0.1								
- Alpha				ceed 0.1								
- Beta (excluding Potassium-40)												
Tributyltin (ng/l)			not ex	ceed 10								
Containing-chlorine pesticides												
(μg/l) - Aldrin			not av	ceed 1.3								
- Alumiii - Chlordane				eed 0.004								
- DDT				eed 0.004								
- Dieldrin				ed 0.0019								
- Endrin				ed 0.0023								
- Endosulfan				ed 0.0087								
- Heptachlor			not exce	ed 0.0036								
- Lindane			not exc	ceed 0.16								
Other pesticides												
- Alachlor												
- Ametryn												
- Atrazine												
- Carbaryl												
- Carbendazim												
- Chlorpyrifos												
- Cypermethrin			unde	tectable								
- 2,4-D												
- Diuron												
- Glyphosate												
- Malathion												
- Mancozeb												
- Methyl Parathion												
- Parathion												

Methods of Examination

Parameters	Methods							
Floatable Solids	Surface Observation							
Colour	using Forel-Ule color scale in evaluation							
Odour	based on olfactory senses performed by at least three people							
	(Samples shall be kept in two glass bottles or TFE-lines)							
Temperature	1) Thermometer or							
	2) Electrical Sensor Method							
рН	pH meter							
Transparency	Secchi disc (designed for marine water)							
Suspended solids	Gravimetric Method							
Salinity	1) Argentometric or							
	2) Electrical Conductivity Method or							
	3) Density or							
	4) Refractometer							
Floatable Oil & Grease	Surface Observation							
Petroleum Hydrocarbon	Pre-concentration followed by Fluorescence Spectrophotometry							
Dissolved Oxygen	1) Azide Modification or							
	2) Membrane Electrode Method or							
	3) Winkler Method							
Total Coliform Bacteria	Multiple Tube Fermentation Technique							
Fecal Coliform Bacteria	Membrana Filter Technique							
Enterococci Bacteria	Membrane Filter Technique							
Nitrate-Nitrogen	Cadmium Reduction Method to convert Nitrate to Nitrite before using Colorimetric Method							
Phosphate-Phosphorus	Colorimetric Method							
Unionized Ammonia	Phenol-Hypochlorite Method							
Total Mercury	Pre-concentration followed by							
	Cold-Vapor/Hydride Generation-Atomic Absorption Spectrometric Method or							
	2) Cold-Vapor/Hydride Generation-Atomic Fluorescence Spectrometric Method or							
	3) Inductively Coupled Plasma Method							
Cadmium	Pre-concentration followed by							
Total Chromium	1) Electrothermal Atomic Absorption Spectrometric Method or							
	2) Inductively Coupled Plasma Method							

Means of marine water quality assessment (cont.)

Parameters	Means of examination							
Chromium Hexavalent	after pre-concentration, perform either of the followings							
Lead	Electrothermal Atomic Absorption Spectrometric Method or							
Copper	2) Inductively Coupled Plasma Method							
Manganese	Pre-concentration followed by							
Zinc	Flame Atomic Absorption Spectrometric Method or							
Iron	2) Electrothermal Atomic Absorption Spectrometric Method or							
	3) Inductively Coupled Plasma Method							
Fluoride	SPADNS Colorimetric Method							
Residual chlorine	N, N-diethyl-p-phenylenediamine Method							
Phenol	Distillation followed by 4 -Aminoantipyrine Colorimetric Method							
Sulfide	Methylene Blue Colorimetric Method							
Cyanide	Pyridine Barbituric Acid Colorimetric Method							
PCBs, Polychlorinated Biphenyl	Pre-concentration followed by Gas Chromatography with Electron Capture Detector							
Pesticide	Pre-concentration followed by							
	1) Gas Chromatography with Mass Spectrophotometry or							
	2) High Performance Liquid Chromatography (HPLC)							
Arsenic	Pre-concentration followed by							
	1) Hydride Generation-Atomic Absorption Spectrometric Method or							
	2) Electrothermal Atomic Absorption Spectrometric Method or							
	3) Inductively Coupled Plasma Method that possesses Chloride interference elimination system							
Radioactivity								
- Alpha	- Co-precipitation Method							
- Beta	- Evaporation Method							
- Potassium-40	- Gamma Spectrometry Method (USEPA) or calculation based on salinity value							
Tributyltin	Pre-concentration followed by							
	1) Gas Chromatography with Flame Photometric Detector							
	2) Gas Chromatography with Mass Spectrophotometry or							
	3) High Performance Liquid Chromatography-ICP-MS							

Note: Marine water sampling techniques and all associated apparatuses shall comply with either the guideline set forth by the Pollution Control Department or guidelines stated in Standard Method for the Examination of Water and Wastewater (APHA, AWWA and WEF, updated) Method of Seawater Analysis (Grasshoff ,1999) Practical Handbook of Seawater Analysis (Strickland and Parsons, 1972) A Manual of Chemical and Biological Methods for Seawater Analysis (Parsons et.al., 1984) Recommended guidelines for measuring organic compounds in Puget Sound water, sediment and tissue samples (Puget Sound Estuary Program, 1997) Prescribed Procedures for Measurement of Radioactivity in Drinking Water (Krieger and Whittaker, 1980) Proceedings of the organotin symposium, Comprehensive method for determination of aquatic butyltin and butylmethyltin species at ultra trace levels using simultaneous hybridization/extraction with GC/FPD detection (Matthias et. Al. 1986 a,b). In addition, marine water sampling techniques and all associated apparatuses shall conform to other new guidelines that are later adopted by the Pollution Control Committee. Such guidelines might be relevant to examination methods, elimination of Chloride interference, or pre-concentration.

Conversion Table of Total Ammonia into Unionized Ammonia

Table showing the proportion of unionized ammonia in marine water at a variety of pH and temperatures

рН		Temperature, [°] C												
	6	8	10	12	14	16	18	20	22	24	26	28	30	32
7.0	0.0013	0.0016	0.0018	0.0022	0.0025	0.0029	0.0034	0.0039	0.0046	0.0052	0.0060	0.0069	0.0080	0.0095
7.2	0.0021	0.0025	0.0029	0.0034	0.0040	0.0046	0.0054	0.0062	0.0072	0.0083	0.0096	0.0110	0.0126	0.0150
7.4	0.0034	0.0040	0.0046	0.0054	0.0063	0.0073	0.0085	0.0098	0.0114	0.0131	0.0150	0.0173	0.0198	0.0236
7.6	0.0053	0.0065	0.0073	0.0086	0.0100	0.0116	0.0134	0.0155	0.0179	0.0206	0.0236	0.0271	0.0310	0.0369
7.8	0.0084	0.0099	0.0116	0.0135	0.0157	0.0182	0.0211	0.0244	0.0281	0.0322	0.0370	0.0423	0.0482	0.0572
8.0	0.0133	0.0156	0.0182	0.0212	0.0247	0.0286	0.0330	0.0381	0.0438	0.0502	0.0574	0.0654	0.0743	0.0877
8.2	0.0210	0.0245	0.0286	0.0286	0.0385	0.0445	0.5140	0.0590	0.0676	0.0772	0.0880	0.0998	0.1129	0.1322
8.4	0.0328	0.0383	0.0445	0.0445	0.0597	0.0688	0.0790	0.0904	0.1031	0.1171	0.1326	0.1495	0.1678	0.1946
8.6	0.0510	0.0593	0.0688	0.0688	0.0914	0.1048	0.1197	0.1361	0.1541	0.1737	0.1950	0.2178	0.2422	0.2768
8.8	0.0785	0.0909	0.1048	0.1048	0.1376	0.1566	0.1773	0.1998	0.2241	0.2500	0.2774	0.3062	0.3362	0.3776
9.0	0.1190	0.1368	0.1565	0.1782	0.2018	0.2273	0.2546	0.2836	0.3140	0.3456	0.3783	0.4116	0.4453	0.4902
9.2	0.1763	0.2008	0.2273	0.2558	0.2861	0.3180	0.3512	0.3855	0.4204	0.4557	0.4909	0.5258	0.5599	0.6038
9.4	0.2533	0.2847	0.3180	0.3526	0.3884	0.4249	0.4618	0.4985	0.5348	0.5702	0.6045	0.6373	0.6685	0.7072
9.6	0.3496	0.3868	0.4249	0.4633	0.5016	0.5394	0.5762	0.6117	0.6456	0.6777	0.7078	0.7358	0.7617	0.7972
9.8	0.4600	0.5000	0.5394	0.5778	0.6147	0.6499	0.6831	0.7140	0.7428	0.7692	0.7933	0.8153	0.8351	0.8585
10.0	0.5745	0.6131	0.6498	0.6844	0.7166	0.7463	0.7735	0.7983	0.8207	0.8408	0.8588	0.8749	0.8892	0.9058
10.2	0.6815	0.7152	0.7463	0.7746	0.8003	0.8234	0.8441	0.8625	0.8788	0.8933	0.9060	0.9173	0.9271	0.9384

Source: Emerson, K., R.C. Russo, R.E. Lund and R.V. Thurston (1975)

Conversion Formula of Total Ammonia into Unionized Ammonia

where

 T_{Temp} = water temperature (K) (K= $^{\circ}$ C+273.15)

 $F\mu$ = the ratio of Unionized Ammonia to Total Ammonia

 $[H^{\dagger}]$ = H+ concentration

K = the dissociation constant

Marine Environment Division

Water Quality Management Bureau

Pollution Control Department

Ministry of Natural Resources and Environment

92 Soi Phahon Yothin 7, Phahon Yothin Rd.

Phayathai, Bangkok 10400, Thailand.

Tel. 0 2298 2253-4 Fax. 0 2298 2240

E-mail: marinepollution_pcd@yahoo.com Website: www.marinepcd.org , www.pcd.go.th